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The shared virtual memory provides a virtual address space that is shared among all processors in a loosely 
coupled distributed-memory multiprocessor system. Application programs can us
they do a traditional virtual memory, except, of course, that processes can run on different processors in parallel. 
The shared virtual memory not only “pages” data between physical memories and disks, as in a convention
memory system, but it also “pages” data between the physical memories of the individual processors. 
The main difficulty in building a shared virtual memory is solving the memory coherence problem A prototype 
system called IVY has been implemented on a local area network of Apollo workstations. The experimental results 
of nontrivial parallel programs run on the prototype show the viability of a shared virtual memory. The success of 
this implementation suggests an operating mode for such 
total processing power and memory capabilities in a far more unified way than the traditional “messagepassing” 
approach. 
 
Introduction 

The benefits of a virtual memory go without 
saying; almost every high performance sequential 
computer in existence today has one. In fact, it is 
hard to believe that loosely coupled multiprocessors 
would not also benefit  

from virtual memory. One can easil
imagine how virtual memory would be incorporated 
into a shared-memory parallel machine because the 
memory hierarchy need not be much different from 
that of a sequential machine. On a multiprocessor in 
which the physical memory is distributed, however, 
the implementation is not obvious. Two kinds of 
multiple CPU systems exist[11]: multiprocessors and 
multicomputers. A multiprocessor is a machine with 
multiple CPUs that share a single common virtual 
address space. All CPUs can read and write every 
location in this address space. Multiprocessors can be 
programmed using well-established techniques, but 
they are difficult and expensive to build. For this 
reason, many multiple CPU systems are simply a 
collection of independent CPU-memory pairs, 
connected by a communication network. Machines of 
this type that do not share primary memory are called 
multicomputers. The usual approach to programming 
a multicomputer is message passing[11]. The 
operating system provides primitives SEND and 
RECEIVE in one form or another, and programmers 
can use these for interprocess communication. This 
makes I/O the central paradigm for multicomputer 
software, something that is unfamiliar and unnatural 
for many programmers. An alternative approach is to 
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The shared virtual memory provides a virtual address space that is shared among all processors in a loosely 
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The shared virtual memory not only “pages” data between physical memories and disks, as in a convention
memory system, but it also “pages” data between the physical memories of the individual processors. 
The main difficulty in building a shared virtual memory is solving the memory coherence problem A prototype 

implemented on a local area network of Apollo workstations. The experimental results 
of nontrivial parallel programs run on the prototype show the viability of a shared virtual memory. The success of 
this implementation suggests an operating mode for such  architectures in which parallel programs can exploit the 
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simulate shared memory on mult
the pioneering efforts in this direction was the work 
of Li and Hudak [1]. In their system, Ivy, a collection 
of workstations on a local area network shared a 
single, paged, virtual address space. The pages are 
distributed among the workstations. When a CPU 
references a page that is not present locally, it gets a 
page fault. The page fault handler then determines 
which CPU has the needed page and sends it a 
request. The CPU replies by sending the page. 
Although various optimizations are p
performance of these systems is often inadequate.

Ivy is a multi-user read/write peer
file system. Ivy has no centralized or dedicated 
components, and it provides useful integrity 
properties without requiring users to fully trust eithe
the underlying peer-to-peer storage system or the 
other users of the file system.  

An Ivy file system consists solely of a set of 
logs, one log per participant. Ivy stores its logs in the 
DHash distributed hash table[9]. Each participant 
finds data by consulting all logs, but performs 
modifications by appending only to its own log. This 
arrangement allows Ivy to maintain meta
consistency without locking. Ivy users can choose 
which other logs to trust, an appropriate arrangement 
in a semi-open peer-to-peer system. 

Ivy presents applications with a 
conventional file system interface. When the 
underlying network is fully connected, Ivy provides 
NFS-like semantics[18], such as close
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consistency. Ivy detects conflicting modifications 
made during a partition, and provides relevant 
version information to application-specific conflict 
revolvers. 
 
Memory Coherence Problem 

A memory is coherent if the value returned 
by a read operation is always the same as the value 
written by the most recent write operation to the same 
address. An architecture with one memory access 
path should have no coherence problem. A single 
access path, however, may not satisfy today’s 
demand for high performance. The memory 
coherence problem was first encountered when 
caches appeared in uniprocessors and has become 
more complicated with the introduction of 
“multicaches” for shared memories on 
multiprocessors The memory coherence problem in a 
shared virtual memory system differs, however, from 
that in multicache systems. A multicache 
multiprocessor usually has a number of processors 
sharing a physical memory through their private 
caches. Since the size of a cache is relatively small 
and the bus connecting it to the shared memory is 
relatively fast, a sophisticated coherence protocol is 
usually implemented in the multicache hardware such 
that the time delay of conflicting writes to a memory 
location is small. Shark[19] introduces a novel 
cooperative-caching mechanism, in which mutually-
distrustful clients can exploit each others’ file caches 
to reduce load on an origin file server.  On the other 
hand, a shared virtual memory on a loosely coupled 
multiprocessor has no physically shared memory, and 
the communication cost between processors is 
nontrivial. Thus conflicts are not likely to be solved 
with negligible delay, and they resemble much more 
a “page fault” in a traditional virtual memory system. 
The work on updates and transactions in peer-to-peer 
systems can be classified based on who is allowed to 
modify it, and how conflicting modifications are 
resolved [21]. This can be divided into the following 
categories: 
Single owner/primary copy is a setting in which 
each data item that originates from some source peer 
p can only be modified by (or through) p — i.e., no 
other peers are allowed to directly modify that data. 
Owner-resolver protocols [21] allow multiple peers 
to modify the data, and they typically rely on the 
owner to resolve any conflicts. If resolution is 
impossible, they “branch” the data into fully 
independent instances. Consensus protocols allow 
multiple peers to modify the data, and some set of 
nodes works together to determine how to arbitrate 
for consistency. Partial divergence schemes handle 
conflicts in a way that results in multiple divergent 
copies of the data, but they operate at a finer level of 

granularity than divergent replica protocols, and they 
allow some portions of the data instance to remain 
shared even after “branching” two instances. In the 
simplest schemes, each data item is owned by a 
single source, which may update that data. Many 
other nodes may replicate the data but may not 
change it (except, perhaps, by going through the 
primary copy at the owner). This is sometimes 
referred to as the single-writer, multiple readers 
problem. In this type of scheme, the owner of the 
data uses a timestamp (logical or physical) to 
preserve the serial order of updates, or to arbitrate 
among different verions of the data. Since there is a 
single owner and a single clock, any node can look at 
the data and deterministically choose an ordering. 
Owner-Resolver: Coda [21] relaxes the single-
owner scheme described above, in allowing data to 
be replicated throughout a network, and for changes 
to be made to the replicas. Coda’s focus is on 
allowing updates in the presence of network partition: 
nodes might need to make changes without having 
access to the primary copy. Once connectivity is 
restored, the newly modified replica must be 
reconciled with the original data and any other 
changed replicas; Coda does this by sharing and 
replaying logs of changes made to the different 
replicas. If Coda determines that multiple concurrent 
changes were made, then activates an application-
specific conflict resolver that attempts to resolve the 
conflicts. In the worst case, the data may need to be 
branched. 

 There are two design choices that greatly 
influence the implementation of a shared virtual 
memory: the granularity of the memory units (i.e., the 
“page size”) and the strategy for maintaining 
coherence. 
 
Distributed File System 

A distributed file system is a resource 
management component of a distributed operating 
system. It implements a common file system that can 
be shared by all the autonomous computers in the 
system.  

The file system is designed to help 
programmers manage their local naming 
environments and share consistent versions of 
collections of software[7]. It names multiple versions 
of local and remote files in a hierarchy. Local names 
can refer to local files or be attached to remote files. 
Remote files also may be referred to directly. Remote 
files are immutable and cached on the local disk. 
Two important goals of distributed file systems 
follow: 
 Network teansparency: the primary goal of a 
distributed file system is to provide the same 
functional capabilities to access files distributed over 



 [Ghode, 2(3): March, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology[464-472] 
 

a network as the file system of a timesharing 
mainframe system does to access files residing at one 
location. Ideally users do not have to be aware of the 
location of  files to access them. This property of a 
distributed file system is known as network 
transparency[16]. 
 High availability: Another major goal of distributed 
file system is to provide high availability. Users 
should  have the same easy access to files, 
irrespective of their physical location. System failures 
or regularly scheduled activities such as backups or 
maintenance should not result in the availability of 
files.  
Architecture of Distributed File System 

Ideally in a distributed file system, files can 
be stored at any machine and the computation can be 
performed at any machine. When a machine needs to 
access a file stored on a remote  machine, the remote 
machine performs the necessary file access operation 
and returns data if a read operation is performed. 
However, for higher performance, several machines, 
referred to as file servers [4][7]are dedicated to 
storing files and performing storage and retrieval 
operations. The rest of the machines in the system 
can be used solely for computation purposes. These 
machines are referred   to as clients [puff][7] and they 
access files stored on servers. A configuration of 
personal workstations, each with a local disk, 
connected to shared file servers by a local area 
network can provide a responsive base for software 
development by a team of programmers. The 
workstations provide each programmer with 
dedicated hardware resources that respond quickly to 
interactive demands. The file servers provide a way 
for the group of programmers to share information A 
file system that supports a group of cooperating 
programmers has two important jobs to do. First, it 
must help each programmer manage a private file 
naming environment in which to work. Second, it 
must help the group share consistent versions of the 
software subsystems being developed in parallel. 
CFS[7] addresses these requirements by providing 
each workstation with a hierarchical name space that 
includes the files on the local disk and on all file 
servers. . The local files are private to the 
workstation. 

The remote files are sharable among all 
workstations. The replication control protocol [17] 
that guarantees consistency in the face of node and 
network failure. To provide strict or sequential 
consistency at little cost to exclusive or shared reads. 
To realize this goal, we use a primary copy method 
with server redirection when concurrent writes occur. 
The strategy differs from the usual primary copy 
scheme in that it allows late and dynamic binding of 

the primary server, chosen at the granularity of a 
single file or directory. 
IVY: Integrated Shared Virtual Memory At 
Yale 

Ivy is a multi-user read/write peer-to-peer 
file system[1]. Ivy has no centralized or dedicated 
components, and it provides useful integrity 
properties without requiring users to fully trust either 
the underlying peer-to-peer storage system or the 
other users of the file system. . Since the first 
prototype IVY took its breath into life in 1986[13], 
the development of software DSM systems can be 
divided into three important phases: ancient history 
(1986-1990), renaissance period (1991-1996), and 
present day (1997-2000) While designing a peer-to-
peer file system [12] following points should be 
considered: 
• Peers have direct control of their resources. Each 
peer may administer its own storage and file objects 
and perform operations on them independently of 
their location and usage in the network. 
• Peers have control of how their resources are used. 
Each peer may authorize specific peers to certain 
actions. Also each peer may define its own sharing 
policy. 
• Peers should be able to allocate and use resources 
they do not physically possess. This can be achieved 
either by pooling of resources or sharing, as long as 
the process complies with the previous requirements. 
• All actions should be accountable. Every 
transaction in the network should be traceable to a 
named peer, resource or combination of two. 
• The network’s capacity should grow as more nodes 
join it, in typical peer-to-peer fashion. Moreover, 
well connected and well resourced nodes should be 
exploited when needed and if they allow so. 
Moreover, the Grid environment[12] we target has 
imposed special requirements, including: 
• Shared namespaces: In addition to sharing file 
contents, participants should be able to agree on 
common collections or clusters [20] of files. This is 
traditionally achieved through distributed filesystem 
designs where numerous peers agree on a common 
namespace of data. We should allow equal 
functionality, additionally supporting the adhoc 
creation and management of multiple such views. 
• Support for multiple storage types: As we presume 
cooperation among new and already deployed file 
services, we should provide mechanisms for merging 
existing data exported via GridFTP, FTP, HTTP, etc. 
into the same distributed namespace and allow 
seamless access to objects disregarding the transfer 
protocol or location. 
• Support for special file types: Data contained in 
files may have special semantics, and as so require or 
support special operations beyond access, move, 
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copy, delete, etc. For example log files may provide 
special mechanisms to append entries or files storing 
experimental results from scientific measurements 
may contain special metadata. 

An Ivy file system consists solely of a set of 
logs, one log per participant. Ivy stores its logs in the 
DHash distributed hash table. Each participant finds 
data by consulting all logs, but performs 
modifications by appending only to its own log. This 
arrangement allows Ivy to maintain meta-data 
consistency without locking. Ivy users can choose 
which other logs to trust, an appropriate arrangement 
in a semi-open peer-to-peer system.  

Ivy presents applications with a 
conventional file system interface. When the 
underlying network is fully connected, Ivy provides 
NFS-like semantics[18], such as close-to-open 
consistency. Ivy detects conflicting modifications 
made during a partition, and provides relevant 
version information to application-specific conflict 
resolvers. Performance measurements on a wide-area 
network show that Ivy is two to three times slower 
than NFS.  

Ivy presents a single file system image that 
appears much like an NFS  file system[18]. In 
contrast to NFS, Ivy does not require a dedicated 
server; instead, it stores all data and meta-data in the 
DHash  peer-to-peer block storage system. DHash 
can distribute and replicate blocks, giving Ivy the 
potential to be highly available. One possible 
application of Ivy is to support distributed projects 
with loosely affiliated participants. , All peer-to-peer 
filesystems, except Ivy, manage a single, distributed 
namespace[12]. Ivy creates a namespace per user and 
addresses issues like shared namespaces (views), 
although the corresponding mechanisms are 
cumbersome as they depend on the read-only nature 
of the underlying DHT[8] 

Building a shared read-write peer-to-peer file 
system poses a number of challenges.  

• First, multiple distributed writers[16] make 
maintenance of consistent file system meta-
data difficult. 

•  Second, unreliable participants make 
locking an unattractive approach for 
achieving meta-data consistency. 

• Third, the participants may not fully trust 
each other, or may not trust that the other 
participants' machines have not been 
compromised by outsiders; 

  Thus there should be a way to ignore or un-
do some or all modifications by a participant  
revealed to be untrustworthy. Finally, distributing 
file-system data over many hosts means that the 
system may have to cope with operation while 

partitioned, and may have to help applications repair 
conflicting updates made during a partition.  

Ivy uses logs to solve the problems 
described above. Each participant with write access 
to a file system maintains a log of changes they have 
made to the file system. Participants scan all the logs 
(most recent record first) to look up file data and 
meta-data. Each participant maintains a private 
snapshot to avoid scanning all but the most recent log 
entries[9]. The use of per-participant logs, instead of 
shared mutable data structures, allows Ivy to avoid 
using locks to protect meta-data. Ivy stores its logs in 
DHash, so a participant's logs are available even 
when the participant is not.  

Ivy resists attacks from non-participants, and 
from corrupt DHash servers, by cryptographically 
verifying the data it retrieves from DHash. An Ivy 
user can cope with attacks from other Ivy users by 
choosing which other logs to read when looking for 
data, and thus which other users to trust. Ignoring a 
log that was once trusted might discard useful 
information or critical meta-data; Ivy provides tools 
to selectively ignore logs and to fix broken meta-data.  

Ivy provides NFS-like file system 
semantics[18] when the underlying network is fully 
connected. For example, Ivy provides close-to-open 
consistency. In the case of network partition, DHash 
replication may allow participants to modify files in 
multiple partitions. Ivy's logs contain version vectors 
that allow it to detect conflicting updates after 
partitions merge, and to provide version information 
to application-specific conflict resolvers.  

The Ivy implementation uses a local NFS 
loop-back server [18] to provide an ordinary file 
system interface. Performance is within a factor of 
two to three of NFS. The main performance 
bottlenecks are network latency and the cost of 
generating digital signatures on data stored in DHash.  

Following sections describes a read/write 
peer-to-peer storage system; previous peer-to-peer 
systems have supported read-only data or data 
writeable by a single publisher. It describes how to 
design a distributed file system with useful integrity 
properties based on a collection of untrusted 
components. Finally, it explores the use of distributed 
hash tables as a building-block for more sophisticated 
systems.  
Design  

An Ivy file system consists of a set of logs, 
one log per participant[9]. A log contains all of one 
participant's changes to file system data and meta-
data. Each participant appends only to its own log, 
but reads from all logs. Participants store log records 
in the DHash distributed hash system, which provides 
per-record replication[17] and authentication. Each 
participant maintains a mutable DHash record (called 
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a log-head) that points to the participant's most recent 
log record. Ivy uses version vectors [9] to impose a 
total order on log records when reading from multiple 
logs. To avoid the expense of repeatedly reading the 
whole log, each participant maintains a private 
snapshot summarizing the file system state as of a 
recent point in time.  

The Ivy implementation acts as a local loop-
back NFS v3 [18] server, in cooperation with a host's 
in-kernel NFS client support. Consequently, Ivy 
presents file system semantics much like those of an 
NFS v3 file server.  
DHash  

Ivy stores all its data in DHash [8]. DHash is 
a distributed peer-to-peer hash table mapping keys to 
arbitrary values. DHash stores each key/value pair on 
a set of Internet hosts determined by hashing the key. 
This paper refers to a DHash key/value pair as a 
DHash block. DHash replicates blocks to avoid 
losing them if nodes crash.  

DHash ensures the integrity of each block 
with one of two methods. A content-hash block 
requires the block's key to be the SHA-1  
cryptographic hash of the block's value; this allows 
anyone fetching the block to verify the value by 
ensuring that its SHA-1 hash matches the key. A 
public-key block requires the block's key to be a 
public key, and the value to be signed using the 
corresponding private key. DHash refuses to store a 
value that does not match the key. Ivy checks the 
authenticity of all data it retrieves from DHash. These 
checks prevent a malicious or buggy DHash node 
from forging data, limiting it to denying the existence 
of a block or producing a stale copy of a public-key 
block.  

Ivy participants communicate only via 
DHash storage; they don't communicate directly with 
each other except when setting up a new file system. 
Ivy uses DHash content-hash blocks to store log 
records. Ivy stores the DHash key of a participant's 
most recent log record in a DHash block called the 
log-head[8]; the log-head is a public-key block, so 
that the participant can update its value without 
changing its key. Each Ivy participant caches 
content-hash blocks locally without fear of using 
stale data, since content-hash blocks are immutable. 
An Ivy participant does not cache other participants' 
log-head blocks, since they may change.  

Ivy uses DHash through a simple interface: 
put(key, value) and get(key). Ivy assumes that, within 
any given network partition, DHash provides write-
read consistency; that is, if put(k, v) completes, a 
subsequent get(k) will yield v. The current DHash 
implementation does not guarantee write-read 
consistency; however, techniques are known which 
can provide such a guarantee with high probability 

These techniques require that DHash replicate data 
and update it carefully, and might significantly 
decrease performance. Ivy operates best in a fully 
connected network, though it has support for conflict 
detection after operating in a partitioned network .  

Ivy would in principle work with other 
distributed hash tables, such as CFS [7], Ivy [1], 
Pond [8], PAST [8], Total Recall [8], and Glacier [8]. 
All of these systems use consistent hashing (or a 
variant) to balance load. Some of these systems are 
designed to improve the availability of individual 
objects 
Log Data Structure  

 
 

Figure: Example Ivy view and logs.  White boxes are 
DHash content-hash blocks; gray boxes are public-key 

blocks. 

An Ivy log consists of a linked list[9] of immutable 
log records. Each log record is a DHash content-hash 
block. Table 1 describes fields common to all log 
records. The prev field contains the previous record's 
DHash key. A participant stores the DHash key of its 
most recent log record in its log-head block. The log-
head is a public-key block with a fixed DHash key, 
which makes it easy for other participants to find.  
 

Table: Fields present in all Ivy log records. 

Field  Use  

prev  DHash key of next oldest log record 

head  DHash key of log-head  

seq  per-log sequence number  

timestamp time at which record was created  

version  version vector  
 

Conflict Resolution  
Ivy provides a tool, lc, that detects conflicting 
application updates to files; these may arise from 
concurrent writes to the same file by applications that 
are in different partitions or which do not perform 
appropriate locking. lc scans an Ivy file system's log 
for records with concurrent version vectors that affect 
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the same file or directory entry. lc determines the 
point in the logs at which the partition must have 
occurred, and determines which participants were in 
which partition. lc then uses Ivy views to construct 
multiple historic views of the file system: one as of 
the time of partition, and one for each partition just 
before the partition healed. For example,  
% ./lc -v /ivy/BXz4+udjsQm4tX63UR9w71SNP0c 
before: +WzW8s7fTEt6pehaB7isSfhkc68 
partition1: l3qLDU5icVMRrbLvhxuJ1WkNvWs 
partition2: JyCKgcsAjZ4uttbbtIX9or+qEXE 
% cat /ivy/+WzW8s7fTEt6pehaB7isSfhkc68/file1 
original content of file1 
% cat 
/ivy/l3qLDU5icVMRrbLvhxuJ1WkNvWs/file1 
original content of file1, changed 
append on first partition 
% cat /ivy/JyCKgcsAjZ4uttbbtIX9or+qEXE/file1 
original content of file1 
append on second partition 

In simple cases, a user could simply 
examine the versions of the file and merge them by 
hand in a text editor. Application-specific resolvers 
such as those used by Coda [13 ] could be used for 
more complex cases.  
Security and Integrity  

Since Ivy is intended to support distributed 
users with arms-length trust relationships, it must be 
able to recover from malicious participants. The 
situation we envision is that a participant's bad 
behavior is discovered after the fact. Malicious 
behavior is assumed to consist of the participant 
using ordinary file system operations to modify or 
delete data. One form of malice might be that an 
outsider breaks into a legitimate user's computer and 
modifies files stored in Ivy.  

To cope with a good user turning bad, the 
other participants can either form a new view that 
excludes the bad participant's log, or form a view that 
only includes the log records before a certain point in 
time. In either case the resulting file system may be 
missing important meta-data. Upon user request, 
Ivy's ivycheck tool will detect and fix certain meta-
data inconsistencies. ivycheck inspects an existing 
file system, finds missing Link and Inode meta-data, 
and creates plausible replacements in a new fix log. 
ivycheck can optionally look in the excluded log in 
order to find hints about what the missing meta-data 
should look like.  
 

 

 
Related Work  

Ivy was motivated by recent work on peer-
to-peer storage, particularly FreeNet , PAST[19] , 
and CFS [7,13]. The data authentication mechanisms 
in these systems limit them to read-only or single-
publisher data, in the sense that only the original 
publisher of each piece of data can modify it. CFS 
[13]builds a file-system on top of peer-to-peer 
storage, using ideas from SFSRO ; however, each file 
system is read-only. Ivy's primary contribution 
relative to these systems is that it uses peer-to-peer 
storage to build a read/write file system that multiple 
users can share. The first heterogeneous distributed 
shared memory prototype named Mermaid [13] was 
designed and implemented by Songnian Zhou et.al. 
Mermaid was implemented on the IVY DSM system 
and supports C language. The initial DSM algorithm 
[20] is a simple sequentially consistent, multiple-
reader/single-writer algorithm, based on that used in 
IVY  and other systems. The machine pages of the 
virtual machine are divided between the nodes, such 
that each node manages a subset of the pages. When 
a node faults on a page, the manager 
node is contacted in the first instance. The manager 
node then forwards to the owner (if it is not itself the 
owner), and the owner returns the data directly to the 
requesting node. The copyset is sent along with the 
data, and if necessary the receiving node performs 
any invalidations. Version numbers are used to avoid 
re-sending unchanged page data. 
Log-structured File System  
Sprite LFS [15] represents a file system as a log of 
operations, along with a snapshot of i-number to i-
node location mappings. LFS uses a single log 
managed by a single server in order to to speed up 
small write performance. Ivy uses multiple logs to let 
multiple participants update the file system without a 
central file server or lock server; Ivy does not gain 
any performance by use of logs.  
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Distributed Storage Systems  
Zebra maintains a per-client log of file 

contents, striped across multiple network nodes. 
Zebra serializes meta-data operations through a 
single meta-data server. Ivy borrows the idea of per-
client logs, but extends them to meta-data as well as 
file contents. This allows Ivy to avoid Zebra's single 
meta-data server, and thus potentially achieve higher 
availability.  

xFS [3], the Serverless Network File 
System, distributes both data and meta-data across 
participating hosts. For every piece of meta-data (e.g. 
an i-node) there is a host that is responsible for 
serializing updates to that meta-data to maintain 
consistency. Ivy avoids any meta-data centralization, 
and is therefore more suitable for wide-area use in 
which participants cannot be trusted to run reliable 
servers. However, Ivy has lower performance than 
xFS and adheres less strictly to serial semantics.  

Frangipani [19] is a distributed file system 
with two layers: a distributed storage service that acts 
as a virtual disk and a set of symmetric file servers. 
Frangipani maintains fairly conventional on-disk file 
system structures, with small, per-server meta-data 
logs to improve performance and recoverability. 
Frangipani servers use locks to serialize updates to 
meta-data. This approach requires reliable and 
trustworthy servers.  

Harp [19] uses a primary copy scheme to 
maintain identical replicas of the entire file system. 
Clients send all NFS requests to the current primary 
server, which serializes them. A Harp system consists 
of a small cluster of well managed servers [20], 
probably physically co-located. Ivy does without any 
central cluster of dedicated servers--at the expense of 
strict serial consistency.  

Pastis [22], a completely decentralized 
multi-user read-write peer-to-peer _le system. Pastis' 
design is simple compared to other existing systems, 
as it does not require complex algorithms like 
Byzantine-fault tolerant (BFT) replication or a central 
administrative authority. It is also highly scalable in 
terms of the number of network nodes and users 
sharing a given _le or portion of the _le system. 
Furthermore, Pastis takes advantage of the fault 
tolerance and good locality properties of its 
underlying storage layer, the Past DHT. 

Keso[13], a distributed and completely 
decentralized file system based on the peer-to-peer 
overlay network DKS. In the system we looked at 
there was three times as much storage space available 
on workstations than was stored in the distributed file 
system. The main goals for the design of  Keso has 
been that it should make use of spare resources, avoid 
storing unnecessarily redundant data, scale well, be 
self-organizing and be a secure file system suitable 

for a real world environment. By basing Keso on 
peer-to-peer techniques it becomes highly scalable, 
fault tolerant and self-organizing. Keso is intended to 
run on ordinary workstations and can make use of the 
previously unused storage space. Keso also provides 
means for access control and data privacy despite 
being built on top of untrusted components. The file 
system utilizes the fact that a lot of data stored in 
traditional file systems is redundant by letting all files 
that contains a datablock with the same contents 
reference the same datablock in the file system. This 
is achieved while still maintaining access control and 
data privacy. 
Reclaiming Storage  

The Elephant file system  allows all file 
system operations to be undone for a period defined 
by the user, after which the change becomes 
permanent. While Ivy does not currently reclaim log 
storage, perhaps it could adopt Elephant's version 
retention policies; the main obstacle is that discarding 
log entries would hurt Ivy's ability to recover from 
malicious participants. Experience with Venti  
suggests that retaining old versions of files 
indefinitely may not be too expensive.  
Consistency and Conflict Resolution  

Coda [13 ] allows a disconnected client to 
modify its own local copy of a file system, which is 
merged into the main replica when the client re-
connects. A Coda client keeps a replay log that 
records modifications to the client's local copies 
while the client is in disconnected mode. When the 
client reconnects with the server, Coda propagates 
client's changes to the server by replaying the log on 
the server. Coda detects changes that conflict with 
changes made by other users, and presents the details 
of the changes to application-specific conflict 
resolvers. Ivy's behavior after a partition heals is 
similar to Coda's conflict resolution: Ivy 
automatically merges non-conflicting updates in the 
logs and lets application-specific tools handle 
conflicts.  

Ficus [9] is a distributed file system in 
which any replica can be updated. Ficus 
automatically merges non-conflicting updates from 
different replicas, and uses version vectors to detect 
conflicting updates and to signal them to the user. Ivy 
also faces the problem of conflicting updates 
performed in different network partitions, and uses 
similar techniques to handle them. However, Ivy's 
main focus is connected operation; in this mode it 
provides close-to-open consistency, which Ficus does 
not, and (in cooperation with DHash) does a better 
job of automatically distributing storage over a wide-
area system.  
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Bayou [9] represents changes to a database as a log 
of updates. Each update includes an application-
specific merge procedure to resolve conflicts. Each 
node maintains a local log of all the updates it knows 
about, both its own and those by other nodes. Nodes 
operate primarily in a disconnected mode, and merge 
logs pairwise when they talk to each other. The log 
and the merge procedures allow a Bayou node to re-
build its database after adding updates made in the 
past by other nodes. As updates reach a special 
primary node, the primary node decides the final and 
permanent order of log entries. Ivy differs from 
Bayou in a number of ways. Ivy's per-client logs 
allow nodes to trust each other less than they have to 
in Bayou. Ivy uses a distributed algorithm to order 
the logs, which avoids Bayou's potentially unreliable 
primary node. Ivy implements a single coherent data 
structure (the file system), rather than a database of 
independent entries; Ivy must ensure that updates 
leave the file system consistent, while Bayou shifts 
much of this burden to application-supplied merge 
procedures. Ivy's design focuses on providing serial 
semantics to connected clients, while Bayou focuses 
on managing conflicts caused by updates from 
disconnected clients.  
Storing Data on Untrusted Servers  

BFS [15], OceanStore [15,16], and 
Farsite [13] all store data on untrusted servers using 
Castro and Liskov's practical Byzantine agreement 
algorithm [15 ]. Multiple clients are allowed to 
modify a given data item; they do this by sending 
update operations to a small group of servers holding 
replicas of the data. These servers agree on which 
operations to apply, and in what order, using 
Byzantine agreement. The reason Byzantine 
agreement is needed is that clients cannot directly 
validate the data they fetch from the servers, since the 
data may be the result of incremental operations that 
no one client is aware of. In contrast, Ivy exposes the 
whole operation history to every client. Each Ivy 
client signs the head of a Merkle hash-tree [9]of its 
log. This allows other clients to verify that the log is 
correct when they retrieve it from DHash; thus Ivy 
clients do not need to trust the DHash servers to 
maintain the correctness or order of the logs. Ivy is 
vulnerable to DHash returning stale copies of signed 
log-heads; Ivy could detect stale data using 
techniques introduced by SUNDR  Ivy's use of logs 
makes it slow, although this inefficiency is partially 
offset by its snapshot mechanism.  

TDB, S4, and PFS  use logging and (for 
TDB and PFS) collision-resistant hashes to allow 
modifications by malicious users or corrupted storage 
devices to be detected and (with S4) undone; Ivy uses 
similar techniques in a distributed file system 
context.  

Spreitzer et al. suggest ways to use cryptographically 
signed log entries to prevent servers from tampering 
with client updates or producing inconsistent log 
orderings; this is in the context of Bayou-like 
systems. Ivy's logs are simpler than Bayou's, since 
only one client writes any given log. This allows Ivy 
to protect log integrity, despite untrusted DHash 
servers, by relatively simple per-client use of 
cryptographic hashes and public key signatures.  
 
Conclusion  

This seminar report presents Ivy, a multi-
user read/write peer-to-peer file system. Ivy is 
suitable for small groups of cooperating participants 
who do not have (or do not want) a single central 
server. Ivy can operate in a relatively open peer-to-
peer environment because it does not require 
participants to trust each other.  

An Ivy file system consists solely of a set of 
logs, one log per participant. This arrangement avoids 
the need for locking to maintain integrity of Ivy 
meta-data. Participants periodically take snapshots of 
the file system to minimize time spent reading the 
logs. Use of per-participant logs allows Ivy users to 
choose which other participants to trust.  

Due to its decentralized design, Ivy provides 
slightly non-traditional file system semantics; 
concurrent updates can generate conflicting log 
records. Ivy provides several tools to automate 
conflict resolution. More work is under way to 
improve them.  

Also the distributed file system architecture 
is explained along with all the features of distributed 
file system. The virtual shared memory concept is 
also explained. 
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